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This paper studies a generalization of polynomial interpolation: given a con
tinuous function over a rather general manifold, hyperinterpolation is a linear
approximation that makes use of values of f on a well chosen finite set. The
approximation is a discrete least-squares approximation constructed with the aid of
a high-order quadrature rule: the role of the quadrature rule is to approximate the
Fourier coellkients of f with respect to an orthonormal basis of the space of poly
nomials of degree ,,; n. The principal result is a generalization of the result of Erdos
and Tunin for classical interpolation at the zeros of orthogonal polynomials: for a
rule of suitably high order (namely 2n or greater), the L 2 error of the approxima
tion is shown to be within a constant factor of the error of best uniform approxima
tion by polynomials of degree ,,; It. The L 2 error therefore converges to zero as the
degree of the approximating polynomial approaches 00. An example discussed in
detail is the approximation of continuous functions on the sphere in R' by spherical
polynomials. In this case the number of quadrature points must exceed the number
of degrees of freedom if n > 2 and s ;;0 3. In such a situation the classical interpola
tion property cannot hold, whereas satisfactory hyperinterpolation approximations
do exist. 'I' 1995 Academic Press, lnc.

1. INTRODUCTION

A theorem of Erdos and Turan [8] states: if r is a classical weight func
tion on [ -I, 1] (i.e. r non-negative, integrable, and vanishing only on a
finite set), and {Pn} is a family of orthogonal polynomials with respect to
r, with Pn of degree n, the polynomial Lnf of degree n or less that inter
polates a continuous function f at the zeros of P" + 1 satisfies

(
1 ) 1/2 (I ) li2

Lt[L,J(X)-f(x)fr(x)dx :::;2 Ltr(x)dx E,,(f),
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where
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E,,(j) = inf Ilf - xlix·
x E [?"
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A 2-dimensional generalization has been discussed recently by Xu [28,
Section 4 J.

In this paper we study a more general class of linear polynomial
approximations. The results encompass the classical case of interpolation at
the zeros of orthogonal polynomials on an interval, but also extend to
more general geometries, such as the sphere in any number of dimensions,
and to situations in which the number of data points exceeds the number
of degrees of freedom of the approximating polynomial. Under suitable
hypotheses we are able to prove a theorem analogous to that of Erdos
and Tunln [8]: that the L 2 error, in an appropriate sense, is bounded, to
within a constant factor, by the error of best un(form approximation. The
L 2 error therefore converges to zero as the degree of the approximating
polynomial approaches 00; and the convergence is rapid if f is suitably
smooth.

The typical situation in which this approximation can be useful is that
in which f is a smooth, analytically specified function whose values are
computable at any desired point. The approximation generally has no role
in situations in which f is an experimentally measured quantity, or one
whose values are determined by mechanical or freehand design.

The approximation is constructed with the aid of a well chosen quad
rature rule of suitably high order: the quadrature rule is used to
approximate the Fourier coefficients with respect to an arbitrary orthonor
mal set. If the number of quadrature points equals the number of degrees
of freedom, i.e. if the quadrature rule is "minimal," then the approximating
polynomial interpolates f at the quadrature points. But if the number of
quadrature points exceeds the number of degrees of freedom then the
classical interpolation conditions are generally not satisfied. In that case we
do not speak of interpolation, but rather of "hyperinterpolation," intending
to suggest interpolation attempted with too many points.

In the particular case of a circle, and hence of approximation by tri
gonometric polynomials, an appropriate quadrature rule is the (periodic)
rectangle rule on a uniform mesh. In this case Zygmund [29, Chapter 10,
Theorem 7J has already established the L 2 convergence of the hyperinter
polation approximation (see Section 3). The present work may be regarded
as an extension of Zygmund's result to more general surfaces and regions.
A different extension, to the approximation of multiply-periodic functions
by s-dimensional trigonometric polynomials, is discussed by Hua and
Wang [10, Chapter 9].
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We shall pay particular attention to the problem of approximation by
spherical polynomials on the unit sphere in IR'. One can imagine a variety
of reasons for wanting to approximate a smooth function f on the sphere
by a polynomial. For example, one might want to integrate f over part of
the sphere, or carry out other numerical procedures more easily performed
on the polynomial. Our approximation is in this case generally not inter
polatory, because, as we shall see, in most cases the number of quadrature
points must exceed the number of degrees of freedom of the approximating
space.

Classical interpolation by polynomials over the sphere has been con
sidered by Reimer [19]. In particular, Reimer estimates the Lebesgue con
stants via the sums of the squares of the Lagrangian interpolation polyno
mials. The difficulty lies in finding an appropriate set of interpolation
points. For example, for the unit sphere in IR' there are (n + 1)2 linearly
independent spherical polynomials of degree ?!,n, yet few of the point sets
on the sphere which are persuasively well distributed have a number of
points which is exactly a perfect square.

In the next section the theory is developed in a general setting, with the
main result being stated as Theorem 1. Then in Section 3 the theory is
applied to three examples: the interval, the circle, and the sphere in IRS. The
final section discusses in more detail the case of the sphere.

2. THE GENERAL THEORY

Let Q be a bounded region of IR' which is either the closure of a connec
ted open domain, or a smooth closed lower-dimensional manifold in IR'.
The region Q is assumed to have finite measure with respect to a given
(positive) measure dw, that is

f dw= V< 00.
!J

(2.1 )

We wish to approximatefE qQ) by a polynomial on Q (or, in the case
of a lower dimensional manifold, by the restriction of a polynomial to the
manifold; even in this case we shall continue to say just "polynomial"). The
approximating polynomial L,J is to be linear in f, and to be of degree ~ n.
Thus Lnf is to belong to Sn' where Sn is the space of polynomials on Q
of degree ~n.

To motivate the coming definition of Lnf, it is useful to define first Pnf,
the orthogonal projection off onto S" with respect to the inner product

(v, z) =f vz dw.
12

(2.2)
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Let d = d" = dim S", and let

be an orthonormal basis of S", that is
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I ~ i, j ~ d. (2.3)

Then
d

p,,!=IU,pj)Pi-
j= I

(2.4 )

As part of the definition of L,J, it is assumed that we are given a quad
rature rule of the form

where

(2.5)

and for 1~k ~m, (2.6)

with the property that the rule is exact for every polynomial of degree ~ 2n.
Thus we require

i IV k g(xd =f g dw
k=1 Q

(2.7)

Corresponding to the inner product (2.2), it is useful to define a "discrete
inner product"

m

(v, Z)m:= I \~'kV(Xk) Z(X k ),

k= I

(2.8)

in which the exact integral is replaced by the quadrature rule. Then L,J is
defined, analogously to PJ, by:

DEFINITION.

d

L,,!:= I (f, P)m Pi-
j=l

(2.9)

This definition, like that of P"f, is easily seen to be invariant under a
change of the orthonormal basis {p I , ... , pA .
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Remark. While the assumed orthonormality of the basis is convenient
theoretically, it is not necessary for practical applications. If {h I' ... , h,,} is
a non-orthonormal basis then (2.9) is replaced by

"L,J= L (f,h)m(H-1ljih i ,

i.j= I

where H is the dx d matrix with elements (hi' hj)",.

A key role is played by a discrete orthogonality relation that mimics
(2.3 ):

LEMMA I. For 1:( i, j:( d,

(2.10)

Proof Because Pi Pj is a polynomial of degree :( 2n, it follows from
(2.7) and (2.3) that

(2.11 )

From this follows a known lower bound on the number of quadrature
points (see, for example, [15]):

LEMMA 2. If a quadrature rule is exact for all polynomials of degree
:( 2n, the number of quadrature points m satisfies m ? dll •

Proof Let Q be the d x m matrix with elements qjk = II'}/2 Pj(.'(k). Then
(2.11) asserts that the rows of Q are orthogonal, and hence linearly inde
pendent, so that rank Q = d. Since rank Q:( m, the result follows. I

DEFINITION. An m-point quadrature rule that is exact for all polyno
mials of degree :( 2n is minimal if m = dll •

Remark. Other lower bounds on the number of quadrature points are
known for special situations, such as "central symmetry" of the rule, the
region Q and the measure. For a summary of such results see Mysovskikh
[ 17].

The next result states that the approximation L"fhas the classical inter
polation property if and only if the quadrature rule is minimal:

LEMMA 3. The classical interpolation formula

1:( k :(m, (2.12)

holds for arbitrary fE C(Q) if and only if the quadrature rule is minimal.
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Proof If m = d then the matrix Q defined in the proof of Lemma 2 is
square, and by Lemma 1 satisfies QQT = I. Together these imply QTQ = I,
or

d

I Pj(Xk)Pj(X/) = 11';; I <>k/,
j~1

1~k, l~m. (2.13 )

The desired property (2.12) now follows immediately from the definition
(2.9).

In the reverse direction, (2.12) holding for arbitrary f E C(,Q) implies that
(2.13) holds, or QT Q = I. Since QQ T = I by Lemma 1, Q must be square,
implying m = d. I

Remark. If the quadrature rule is minimal then (2.13) allows the
weights to be expressed explicitly: setting 1= k it gives

I~k~d. (2.14)

This formula for the weights in a "cubature formula with fewest nodes" has
been obtained previously by Mysovskikh [15], using an argument equiv
alent to that in Lemma 3.

The next result asserts that L,J becomes exact if.f is a polynomial of
degree ~n.

LEMMA 4. Iff E 5" then L,J =.f.

Proof Since f E 5" it may be expressed as

"f= L ajPi'
j~1

giving, from (2.9),

d d

= I I a;(Pi'Pi)mPi
i= I i~ I

"= I ajPi=.f. I
j= 1

640k32-9
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We are now ready to state the main result of the paper. The norms that
appear in the theorem are defined by

Ilglloc=sup Ig(x)l,
"YEt}

gE C(Q),

and En(g) is the error of best uniform approximation of g by an element
of Sn,

En( g) = inf II g - XII" ,
XESn

gEC(Q). (2.15 )

THEOREM 1. Given f E C(Q), let Lnf E Sn be defined by (2.9), where the
quadrature points and weights in the discrete inner product satisfy (2.6) and
(2.7). Then

and

Thus

II L,,/ - fl12 ,;;; 2 V I
/
2En(f)·

(2.16 )

(2.17)

IIL,,/ - fl12 -+ 0 as n -+ CfJ.

Before proving the theorem it is convenient to prove first one more
lemma.

LEMMA 5. Under the conditions of Theorem 1,

(a) (f - Lnf, X),,, = 0 'IX E Sn'

(b) (Ln!, Lnf)m +(f -L,,f, f- Lnflm = (f, f)m,

(c) (L"f, Lnf)m';;; (f, f)m'

(d) (f - Lnf, f - Lnf)m = minx E s.(f - X, f - X)m'

Proof (al This follows immediately from the definition (2.9) and the
discrete orthogonality relation (2.10).

(b) This follows from (Lnf, Lnf)m = (f, Lnf)m, which is a conse
quence of (al.

(c) This is immediate from (b), since (g, g)m ~ O.
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(d) Replacing f by f - X in (b), with XES,,, we have

(j - x, f - X)", = (j - Lnf, f - L,J)", + (L,J - x, L,J - X)""

from which the result follows immediately. I

245

Remarks. Part (a) of the lemma asserts that the m-vector
{Lnf(xd} t~ I is the orthogonal projection, with respect to the inner
product ( ., . )"" of the m-vector {f(xd} %'~ I' onto the d-dimensional space
spanned by {Pj(Xk)}Z'~I' 1~j~d. Part (b) is the corresponding
Pythagoras theorem. Part (c), a trivial corollary, is the crucial result for
proving Theorem 1. Part (d) gives us an interpretation of L,J, as the best
discrete least-squares approximation (weighted by the quadrature weights)
off at the quadrature points.

Proof of Theorem 1. The stability result (2.16) follows from

IILnfl1 ~ = (L,J, L,J) = (L,J, L,J)", ~ (j, /)",

'"
= I wkf(xkf~ L H'k Ilfll~= Vllfll~,

k= I k~ I

where in the first step we used (2.7), which is applicable because
(L nf)2 E S2n' then Lemma 5(c), and in the last step again (2.7), this time
with g = I.

The error bound (2.17) then follows by a standard argument: for any
XES" we have, with the aid of Lemma 4 and the first part of the theorem,

IIL"f - fl12 = IILnU- X) - (j - x)112 ~ IIL,,(j - x)112 + Ilf - xI12

~ V
I
/
2 1If-xllz + V 1i2 1lf-xllz =2V 1i2 1If-xllx·

It follows, since this holds for arbitrary XES", that

IIL,J-fI12,;:;;2V 1
/
2 inf Ilf-Xlly=2V 1

/
2E,,(j). I

XE Sn

Remarks. If L,Jhas the classical interpolation property (2.12) then the
proof of Theorem 1 simplifies, in that the first inequality is replaced by the
trivial equality (L,J, L,J)", = (j, /)",.

The error estimate in the theorem may be used to derive error estimates
for other quantities. One interesting application is to a generalization of the
method of "product integration;" see [21, 22J for the classical I-dimen
sional case. In this method an integral over Q of the form JQ hfdw, where
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I is smooth and h contains any singularities in the integrand, IS

approximated by

• d nl

j hL,Jdw= L: (f,p)", f hpjdw= L: WkI(Xk),
Q j~1 Q k~1

where
d

Wk = Wk L pj(xd f hpJ dw,
j~] 12

k=I, ... ,m. (2.18 )

The following corollary of Theorem I gives a useful error bound for this
approximation:

COROLLARY. Under the conditions in Theorem I, let h be measurable on
D with respect to dw and satiJ!r llh liz < 00, and let WI' ... , W", be git'en by
(2.18). Then

I
f WkI(xd- f I?ldwj ~211hllz V]/2En(f)·

k ~] S]

Proof From the Cauchy-Schwarz inequality and Theorem I,

(2.19)

If WkI(Xk)- r hfdwj=IJ h(L,J-I)dW!
k~1 'S} Q

~ ilhll z IIL,J - fl12 ~ Ilhl1 22V 1
/
2E,.(f). I

For example, we may take h to be the characteristic function of a subset
D] of D, so that JhI deo is the integral ofI over D]. A curiosity in this case
is that the approximation Lk WkI(xd involves values of I at points at
which the whole integrand hf is zero.

3. EXAMPLES

We begin with simple I-dimensional examples.

EXAMPLE A (The interval). Here

D=[-I,I],

dw = r(x) dx, with rE L( -I, I), r(x)? 0, r(x) = 0 only on a finite set,

d=n+l.
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Let {P/ j ~ O} be a system of normalized orthogonal polynomials on
[ - I, I] with respect to the weight r, i.e. Pj is of degree j, and

.1

J p;(x)Pj(:"dr(x)dx=bij.
-I

For fixed m~n+l, let {Xk}Z'~1 and {wdZ'=1 be "Gauss" points and
weights with respect to this system, i.e. ;rk is the kth zero of Pm' and the
weights are such that

m 1

I wkg(xd = f g(x) r(x) dx
k~ I -I

In this case our approximation (2.9) becomes

II m

L,J= I I It'kf(xd pjCrk) p;.
j~Ok~1

By Theorem I the error in Lnf satisfies

(3.1 )

For m = n + I the approximation is interpolatory, by Lemma 3.
Moreover, (2.14) with m=d=n+ I is a known expression for the Gauss
weights (see [26, Theorem 3.4.2]). The result (3.2) in this case was
obtained by Erdos and Turim [8]. For m>n+ I the result (3.2) seems
to be new. It tells us in effect that the Erdos-Turan bound is not
affected if we use in (3.1) a Gauss quadrature rule of higher order than
necessary.

EXAMPLE B (The circle). Here

Q = unit circle c 1R 2
,

dw = angular measure in radians,

v= f drv = 2n,

Sn = span {I, cos {}, sin {}, ..., cos n{}, sin nO},

d=2n+ I.
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For the quadrature rule we take the rectangle rule with m equal intervals
of length 2n/m. This rule is easily seen to be exact for all trigonometric
polynomials of degree ~m - I, i.e.

2n m - I (2nk) f27'- L g - = g( 0) dO
m k~O m 0

so that (2.7) holds if m ~ 2n + 1. The resulting approximation is

/I

L,J(O)=!ao + L: (aicosjO+bisinjO),
. .

i~ \

where

(3.3)

2 n~ I (2nj k) j' (2nk)elj = - L. cos --. -,
m k~O m m

b =~ /1£ I sin (2nj k) f (2nk),
J mk~1 m m

j~O,

j~ 1.

(3.4 )

(3.5)

By Theorem I the approximation L,J satisfies, for m ~ 2n + I,

(f 2" ILnf(O)- f(OWdO)'/2 ~2(27t)1/2 inf Ilf -xii",. (3.6)
o XE5n

A closely related result has been stated by Zygmund [29, Chapter 10,
Theorem 7.1].

EXAMPLE C (The sphere in !R'). Here

Q = {x E iR': I x] = I} =: Q"

dw = angular measure,

v= J dw = IQsl,
a

(s+n-I) (s+n-2)
d= s-I + s-I (see below).

Let
m

L H'kg(Xk)
k~ I

(3.7)
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be any quadrature rule for Q s which satisfies (2.6) and which is exact for
g a spherical polynomial of degree ::::; 2n, i.e.

(3.8 )

(Some examples of such rules are given in Section 4).
As basis functions for the space S" we may take spherical harmonics. The

number of linearly independent spherical harmonics of exact degree 1 is
[9,14]

15(1) = (5 +1- I)_(5 +1- 3),
5-1 5-1

where it is understood that

(3.9)

if a<b.

Let { YIl , .", YI6(/)} be an orthonormal set of spherical harmonics of degree
I. Then as a basis for S" we may take

and the dimension of S" is

d= f J(l)=(5+n-I)+(5+n-2).
1=0 5-1 5-1

The approximation that corresponds to the quadrature rule (3.7) is

" 6(/1 m

L,J= L L L Wk!(Xk) Y1r(Xk) Y 1r ·
1=0 r~1 k=1

By Theorem I this approximation satisfies

(3.1 0)

(3.11 )

(3.12 )

Ditkin and Lyusternik [7] and Wienert [27] have previously advocated
the use of particular approximations of the form (3.11). The latter paper
obtained an estimate similar to (3.12) for the particular case 5 = 3.
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4. THE CASE OF THE SPHERE IN IR' IN MORE DETAIL

In this section we first indicate some quadrature rules over the sphere
which could be used in Example C of the preceding section. The notation
is that of Example C. For more general discussions of quadrature over the
sphere see [25].

We shall also be interested in the number of quadrature points In
required by the quadrature rule. In this connection, we note from Lemma
2 and (3.10) that

(
s + n - 1) (S + n - 2) _d

In? 1 + 1 -",s- s-
(4.1 )

a result first stated by Mysovskikh [16]. We shall see that minimal quad
rature formulas (i.e. rules with In = d,,) do not exist for s? 3 and n > 2. It
then follows from Lemma 3 that L,J can have the classical interpolation
property only if s ~ 2 or n ~ 2.

4.1. Spherical t-Designs

A spherical t-design, a notion introduced by Delsarte, Goethals and
Seidel [6] (see also [5]), is a set of points {XdZ'~1 on the sphere Q, such
that the equal-weight quadrature rule based on these points is exact for all
polynomials of degree ~ t. Setting t = 2n, a spherical 2n-design {xk} ;'~ 1 has
the property that

(4.2)

so that (3.8) is satisfied with Wk = IQ,.I/In. Thus the equal weight quad
rature rule based on a spherical 2n-design is a suitable rule for use in
Example C. Fortunately, it is known from the work of Seymour and
Zaslavsky [20] that spherical t-designs exist for every value of t and every
dimension s.

Explicit constructions of spherical t-designs are now known for arbitrary
sand t, see [2, 18], but the numbers of points in these designs are thought
to be far from the least possible.

That the number of points In in a spherical 2n-design satisfies the bound
(4.1) was shown already in [6]. Significantly for us, it is also known that
equality cannot hold, except in special cases. A spherical 2n-design with In
points is said to be "tight" if equality holds in (4.1), that is, if

ttl = (S +n - I) + (S + 11 - 2).
s-l s-I

(4.3 )
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Thus a spherical design is tight if and only if the corresponding equal
weight quadrature formula is minimal. Bannai and Damerell [3] show that
for s ~ 3 and n ~ 3 there exist no tight spherical designs. (The non-existence
of tight spherical designs for n = 3 had already been established in [6].)
It follows then from Lemma 3 that the approximation (3.11) with
H'k = IQ, 11m cannot be interpolatory for arbitrary functions f if s ~ 3 and
n ~ 3. Thus we have established:

LEMMA 6. For the case of a sphere in Ill' with s ~ 3, if 11 ~ 3 and the
weights IV I' ... , W m are all equal, then the approximation L"f does not have
the classical interpolation property (2.12).

The fact that spherical I-designs play an important role in Lagrange
interpolation theory for spheres has been pointed out previously by Bos
[ 4]. In particular, Theorem 6 of [4] is closely related to Lemma 6.

4.2. Other Rules

The special feature of spherical t-designs is that the corresponding
quadrature formulas have equal weights. Once this restriction is removed,
and we admit any quadrature rule satisfying (2.6) and (3.8), the
possibilities are enlarged.

For example, rules of higher order may be obtained by taking an
appropriately weighted average of two spherical-design rules [9]. Another
possibility, explored in [12 J, is to restrict attention to quadrature formulas
that are fully symmetric with respect to a given cartesian coordinate system,
in the sense that the rule is unchanged if the cartesian coordinates of the
points are permuted, or any cartesian component of the points changed in
sign. Explicit formulas of degree 11 (and therefore allowing n = 5) are
presented in [12] for 5 :::::; s:::::; 9, and [11] gives formulas of degree up to 9
in any number of dimensions, and of degree up to 17 for s = 3 and 4.

There is a large literature, initiated by Sobolev [23], concerning rules
that are invariant under a symmetry group of Q,. In this situation a
theorem of Sobolev [23], shows that all polynomials of degree < a are
integrated exactly, where a is the degree of the non-trivial invariant polyno
mial (with respect to the particular symmetry group) of lowest degree.

Lebedev [13] has constructed a large number of quadrature rules for Q 3

by exploiting the Sobolev theory for the particular case of octohedral sym
metry, and then solving explicitly the equations (3.8) for the points and
weights. In most cases the weights turn out to be positive, and in these
cases the rule is a candidate for use in Example C. Lebedev's rules of order
2n have the property that

m m 4
~-

d" (11 + 1)1 3
as 11 ...... OC, (4.4 )
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so that (4.1) is not an equality, and the rules are not minimal, at least for
large n.

In a different direction, Stroud [25] has proposed tensor products of
Gauss rules with respect to appropriate angular variables. Since he shows
that such rules integrate all spherical polynomials up to arbitrarily high
degree for Gauss rules of sufficiently high order, these too are suitable
quadrature rules for use in Example C. For example, for the case of Q" if
the integral is written in polar coordinates,

f g dm = r' rg( 0, ¢) sin 0 dO d¢,
!J, 0 0

with () the polar angle and ¢ the azimuthal angle, then a rule of order
2n + I > 2n is

where {cos OJ are the zeros of the Legendre polynomial of degree n + 1,
and {llJ are the corresponding Gauss-Legendre weights. The value of m/d"
in this case is

which, as pointed out by Atkinson [I], is SO % larger than the asymptotic
value for Lebedev's construction. It is 100 % larger than the ratio of a mini
mal quadrature rule, were such a thing to exist.

4.3. Can Minimal Quadrature Rules for the Sphere in IW Exist?

While unequal-weight quadrature rules for the sphere might be useful,
we shall see that they cannot be minimal: for we shall show that a minimal
rule must have equal weights. Minimal rules are therefore subject to the
very restrictive range of possibilities discussed above under the heading of
spherical t-designs.

LEMMA 7. A minimal quadrature rule for the sphere in [R"' has equal
weights.

Proof From the definition of a minimal rule we have m = dn' As a
result (2.14) gives us an explicit expression for the weights, namely
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J(/I

L Ylr(x)l
,.=1
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with c5(l) given by (3.9) is invariant under rotations of the sphere (see [14,
p. 7J), it follows that the weights \I'k are all equal, and hence, from (2.7)
with g == 1,

On combining the last two lemmas we obtain our final result.

THEOREM 2. For the case of the sphere in IR' with s ~ 3, if n ~ 3 then the
quadrature formula satisfying (2.6) and (3.8) is not minimal, and the
approximation L,J given by (3.11 ) does not have the classical interpolation
property (2.12).

ACKNOWLEDGMENTS

The author was supported in part by the U.S. Army Research Office through the Mathe
matical Sciences Institute at Cornell University and in part by the Australian Research
Council. He is indebted to N. 1. A. Sloane for advice about spherical I-designs and to K. E.
Atkinson, R. Cools, and W, Rheinboldt for stimulating suggestions.

REFERENCES

1. K. ATKINSON, Numerical integration on the sphere, J. Austral. Malh. Soc. Ser. B 23
(1982), 332-347.

2. B. BAJNOK, Chebyshev quadrature formulas on the sphere, Congr. Numer. 85 11991),
214-218.

3. E. BANNAI AND R. M. DAMERELL, Tight spherical designs, 1. J. Math. Soc. Japan 31
11979), 199--207.

4. L. Bos, Some remarks on the Fejer problem for Lagrange interpolation in several
variables, J. Approx. Theory 60 (1990). 133-140.

5. J. H. CONWAY AND N. J. A. SLOANE. "Sphere Packings. Lattices and Groups," Springer
Verlag, New York. 1988.

6. P. DELSARTE, J. M. GOETHALS AND J. J. SEIDEL, Spherical codes and designs, Geom.
Dedicata 6 ( 1977), 363-388.

7. V. A. DITKIN A:-.!D L. A. LYUSWRNIK, On a method of practical harmonic analysis on the
sphere, ~)'chisl. Matern. i ~)chisl. Teklm., Akad. Nauk SSSR Moscow No. I (1953), 3-13.
[in Russian]

8. P. ERDOS AND P. TURAN, On interpolation. I. Quadrature and mean convergence in the
Lagrange interpolation, Ann. Malh. 38 (1937), 145-155.



254 IAN H. SLOAN

9. J. M. GOETHALS AND J. J. SEIDEL. Cubature fonnulae. polytopes and spherical designs, in
"The Geometric Vein: The Coxeter Festschrift" (c. Davis, B. Grunbaum, and F. A. Sherk.
Eds.). pp. 203-218, Springer-Verlag, Berlin/New York, 1981.

10. L. K. HUA AND Y. WANU, "Applications of Number Theory to Numerical Analysis,"
Springer-Verlag, Berlin/Science Press, Beijing, 1981.

11. P. KEAST, Cubature formulas for the surface of the sphere, 1. Comput. Appl. Math. 27,
Nos. I & 2 (1987),151-172.

12. P. KEAST AND J. C. DIAZ, Fully symmetric integration fonnulas for the surface of the
sphere in s dimensions, SIAM 1. Numer. Anal. 20 (1983),406-419.

13. V. I. LEBEDEV, Quadrature on a sphere, U.S.S.R. Compo Math. alld Math. Phys. 16,
NO.2(1976),1024.

14. C. MULLER, "Spherical Harmonics." Lecture Notes in Mathematics. Vol. 17, Springer
Verlag, Berlin/New York, 1966.

15. I. P. MVSOVSKIKH, On the construction of cubature formulas with fewest nodes, SOl'iet
Math. Dokl. 9 ( 1968). 277-280.

16. I. P. MVSOVSKIKH, On the evaluation of integrals over the surface of a sphere, SOl'iet
Math. Dokl. 18 ( 1977), 925-929.

17. 1. P. MVSOVSKIKH, The approximation of multiple integrals by using interpolatory
cubature fonnulae, in "Quantitative Approximation" (R. A. De Vore and K. Scherer,
Eds.), pp. 217-243, Academic Press, New York. 1980.

18. P. RABAU AND B. BAJNOK. Bounds for the number of nodes in Chebyshev-type quadrature
formulas, J. Appro.\·. Theory 67 (1991 J, 199- 214.

19. M. REIMER, Interpolation on the sphere and bounds for the Lagrangian square sums,
Results Math. II (1987),144-164.

20. P. D. SEYMOUR AND T. ZASLAVSKV, Averaging sets: A generalization of mean values and
spherical designs, Adl'. in Math. 52 (1984),213-240.

21. 1. H. SLOAN, On the numerical evaluation of singular integrals, BIT 18 (1978),91-102.
22. 1. H. SLOAN AND W. E. SMITH, Properties of interpolatory product integration rules,

SIAM J. Numer. Anal. 19 (1982), 427-442.
23. S. L. SOBOLEV, Cubature formulae on the sphere invariant under finite groups of rota

tions, SOl'iet Math. Dokl. 3 ( 1962), 1307-1310.
24. S. L. SOBOLEV, "Introduction to the Theory of Cubature Formulas." Nauka, Moscow,

1974. [in Russian]; Gordon and Breach, 1992, English translation.
25. A. H. STROUD. "Approximate Calculation of Multiple Integrals," Prentice-Hall, 1971.
26. G. SZEUO, "Orthogonal Polynomials," American Mathematical Society, Colloquium Pub

lications, Vol. 23. Amer. Math. Soc., Providence, RI, 1959.
27. L. WIENERT, "Die numerische Approximation von Randintegralopernen fur die

Helmholtzgleichung in 1R 3
." doctoral dissertation, Gottingen, 1990.

28. Y. Xu, Gaussian cubature and bivariate polynomial interpolation, Math. Camp. 59
( 1992), 547-555.

29. A. ZVGMUND, "Trigonometric Series," Vol. II, Cambridge Univ. Press, Cambridge. UK,
1959.


